The NIST
ATM PNNI Routing Protocol Simulator
(APROPYS)

Operation and Programming Guide

Version 2.0

Yunming Song
David Cypher
David Su

U.S. Department of Commerce
Technology Adminidration

Nationd Ingtitute of Standards and Technology
Information Technology Laboratory

Advanced Networks Technologies Divison
High Speed Network Technologies Group
Gaithersburg, MD 20899-8920

September 1999



1

2

21

31
32

33

34

41
42

51
52
53
54
55

71
712

81

TABLE OF CONTENTS

INTRODUCTION......citiiiiitiicsi i 1

OVERVIEW OF THE SIMULATOR......coiii et 2

COMPONENTS...ctertereseereasesessaeseeseeeesessesssseas s st sessssesessessesessesse st s et esesaesesasbeessteeasbae st sesesseseesebeessssesnesesesntesas
211  ATM Switch........
2.1.2  Physical Link

OPERATING THE SIMULATOR......coiirriii s s 3

STARTING THE PROGRAM ....ottittrittrensiseastresstsessesessesessesssessssesssssssssssessssassssssssssssssssssssessssssssssssssssssssssssasans
USER INTERFACE ...ttt cteeaeeseaeeseseeseseessesaseteesstsessssesessesessesessesessssaesssasssssssssassssassesssssssssssssssssssssssssesssssesssasans
0 R A o e 1 0 = PR STRRPTRRPSRRN
OPERATING THE SIMULATOR ....ctururetreeerenseresereseesesseneanes
3.3.1 Loading a Network Configuration.............ccceuvuuun.

3.3.2 Creating a Network Configuration
OPERATIONAL FEATURES .....etuttrtutreuetretsasetsessssessesesessessssesessssesssssssssasssssesssssssssesssssssssssssssssssssssssssssesassesanes
34.1  Displaying Information about the NEIWOIK..........cccceeeemenninnseee s esssssesenas 14
34.2  MaKing MOQifiCALIONS......cccccuiieicieiricieeirie ettt ss et as bbb se st beansatesanas 14
3.4.3  Processing Of PartitiONS.......cccccerciniisesss sttt ettt ssss e sttt sasasesesssasesasas 15
344  Determination Of SLaDIITY......ccccccereeiiineeee et renas 15

ADJUNCT GRAPHICAL USER INTERFACE......... s 15

[NTRODUCTION ..cctututueueeuseessessesessesessesesessssessssesssssssssssssasssssssssssssssssesssssssssssessssassssassssassssassssasssssssessssssssns
OPERATING THE GUI ..ttt ettt s st se bbb bbbt
THE File NAME WINUOW......c.cciiieiiieecces sttt se bbb sabe b et esasabesesnsasesasas
422  The OPtioN WINGOW......cccciirriinesssssiss s ssssssssssssssss s sssasesssssasssssssssesssasasesasssasesssssasesass
423 TheDefault Value Window...........cccceueevvrveeneninnnnes
4.2.4  The Node Configuration Window..........ccccccevuruene.
425  The Connectivity Configuration Window
426  The ModifiCation WINUOW.........ccociiiiriinssnessssss s st sssssesssssasesesssssesssssasesasas
427  ThEFAITUrE WINUOW......cciieeeciiieecisiss st s b se s st ebesasatesesnsasesanas
4.2.8  THe OULPUL WINUOW......cciiireiiiiirrsisiessiss s sss s ssss st s s sssesssssasesssssssesssasasasasasasesesnsasesass

SIMULATOR CONCEPTS ...t s s 21

SIMULATOR CLOCK
ATM SWITCH...............
LINK COMPONENTS.
COMPONENT FAILURE/RESTORE ......c.custtuetriritastsiseseasasiseessssssesesssssssses st sssessss et st ssssssssssssssssssssssesssssnsses 2
OUTPUT RESULTS ..ttt ettt 23

OVERVIEW OF THE SMULATOR FOR THE PROGRAMMER ........cooiiiicccseccees 24

ASSUMPTIONSFOR THE SIMULATOR ... 25

ASSUMPTIONS TO SIMPLIFY THE ATM PNNI SIMULATOR ...cocuiuiiiiereieieieieieieiereieieie e ssse e senssenenas 25
CENERAL A SSUMPTIONS.....cucutitueuietieuesestiesesessseseessse ettt ettt 26

COMPONENTSPROGRAMMING.......coini s s 27

ATIM SWITCH ctceteetreeeeseese ettt see e e s b eess e ss b eea e s e b £t s s E s E e e e £ e a bbbt s et st
8.1.1  Higher level LGN




8.2 PHYSICAL LINKS ..ottt sttt 31

91
9.2
9.3
94
95

821

HIQNEE 1EVE] TINKS.....vcvieiececisiiscstsese sttt st st s s s s ssnnns 33

ARCHITECTURE OF THE SIMULATOR ...t s 35

INITIALIZATION MODULE....cocttuiuiteruererersiesereresssere s s ss bbb bbb bbb bbb s s rerenssenenenas
USER INTERFACE ..o sttt se s sess st a s s s s
CONTROL MODULE.....eututuetitsteessssesessssesesssessssesssssessesessssssesssssessessssssssssesssssssssssssssssesssssessssssssesssssssessssssssnns

EVENT MANAGER MODULE

PROTOCOL MODULES......ccoiuitiirisisesesesess s ss s ssssssnenes

951
9.5.2
953
954
955
9.5.6

ANNEX A.

[ L= Lo T 2 |, T

SVCC-based RCC Neighboring Peer FSM
Horizontal liNK HEIIO ProtOCOI ...ttt sssessssenns

MODIFICATIONSTO VERSION 1.1 FROM VERSION 1.0.......cccooninciiisiseneenenns 46

ANNEX B. MODIFICATIONSAND ADDITIONSTO VERSION 20 FROM VERSION L1........ccoeniennns 48



The NIST ATM PNNI Routing Protocol Simulator

Operation and Programming Guide

Verson 2.0
Abstract

An Asynchronous Transfer Mode (ATM) Private Network-Network Interface (PNNI) routing
protocol smulator has been developed to provide a means for researchers and network
planners to andyze the behavior of ATM network routing protocols. The smulator isatool that
gives the user an interactive modeing environment with a user-friendly user interface. With this
tool the user can create different network topologies, control component parameters, measure
network performance, and log data from smulation runs. This document provides ingructions
for creating network configurations, specifying component parameters, and controlling the
display of the smulation results. The design of the Smulator is aso provided to guide the user,
who wishes to modify the smulator source code, to accommodate network components not
previoudy defined, or to change the behavior of components dready defined.

Veson 2.0 contans modifications to the user interface and additional features. Detailed
modifications and additions are listed in Annex B: Modifications and additions to Verson 2.0
from Verson 1.1. Additiondly, Verson 2.0 now contains a separate graphica user interface
that is described in Section 4.

1 Introduction

The ATM PNNI Routing Protocol Smulator was developed at the Nationd Inditute of
Standards and Technology (NIST) to provide aflexible test bed for sudying and evauating the
performance of ATM network routing based on the ATM Forum Specification, “Private
Network-Network Interface Specification V1.0". The smulator is atool that gives the user an
interactive modding environment with a user-friendly user interface (an adjunct graphica user
interface is now included (see section 4)). NIST has developed this tool usng the “C’
programming language to execute on a SUN SPARCdation usng SunOS Release 5.5.1. The
adjunct graphica user interface uses the Tdl/Tk programming language. This Smulation todl is
based upon discrete event smulation techniques. The adjunct graphica user interface facilites
the user in adding, removing or modifying nodes or links in the given network topology.



The ATM PNNI Routing Protocol Simulator alows the user to create different network
topologies, set the parameters of component operation, and load the different smulated
configurations. While the amulation is running, various indantaneous performance measures can
be displayed in text form on the screen or the user can record these for subsequent analyss.
With this smulator, the user can design and test dmogt any network configuration and evaduate
its performance within the condraints of the physica machine running the smulation. Therefore
the user can evauate the scal ability, robustness and maintainability of PNNI routing status.

2 Overview of the Simulator

There are two basic gods for the smulator: evaluating the stability of the PNNI routing protocol

and studying the scdability of the PNNI routing protocol. Based upon these gods, the

gmulator can be used as a tool for PNNI routing network planning and for PNNI routing

protocol performance andyds. Asa planning or protocol performance andyss tool, a network

planner, researcher or protocol designer can run the sSmulator with various network

configurations to study the network performance. It could be used to answer the following

questions:
- How much time is needed for the PNINI routing protocol to reach stability?

How much data must be exchanged for the PNNI routing protocol to reach

dability?

How much data must be exchanged to maintain the PNNI routing status, once initial

dability is reached?

How quickly does the PNNI routing protocol recover from link or node failures?

Note that stability is defined as the state where each of the PNINI routing protocols has reached
an operating mode, which is conddered afind date.

The smulator is desgned in such away that modules amulating switches or linkswithin an ATM
PNNI routing network can be easily modified, added or removed.

2.1 Components

The network to be smulated consists of two components. ATM Switches and Physical Links
All components are characterized by one or more parameters. All parameters may be
specified by the user a the time of component cregtion and may be modified later, through the
use of the adjunct graphica user interface.

The ATM switch component smulates a PNNI capable node (i.e,, it implements the protocols
and Finite State Machines (FSM)). The Physicd link simulates the physicd medium (eg.,



optica fiber) on which packets are tranamitted. A single physica link component connects two
ATM switch components.

2.1.1 ATM Switch

Another term for an ATM switch is “Node’. The user must specify the following PNNI
information (i.e, parameters) per node ATM End Sysem Address and Node levd.
Optiondly, the user may specify non-default values for Peer Group Leadership Priority or the
PTSE refresh interval.

The user must dso specify the time when a node is to become active (i.e, activelup time). The
user may aso enter other node configuration values (i.e., a node' s processing time for each of
the different packet types. Hello, Database Summary, PTSE Request, PTSP, and PTSE
Acknowledgment).

It is assumed that the node's buffer is unlimited, meaning that dl events and packets can be
stored by this node.

2.1.2 Physical Link

There are two parameters, physicd link delay and active/up time, that define a physica link.
The user must specify aphysicd link dday. The active/up time depends on two Stuations. The
first is when the physica link becomes active when both nodes that it connects become active.
In this case there is no need to specify an active/up time. The second is when the physicdl link is
to become active at alater time. In this case the user must enter a value for the active/up time.
It is assumed that the usable bandwidth of the link is unlimited.

3 Operating the Simulator

This part of the document provides information for the user of the smulator to creste network
topologies usng smulated ATM switches (i.e., nodes), and physica links. The manua includes
indructions for digplay manipulation, component linking, parameter setting, data output and
andyss.

The user may control the parameters associated with these components, and specify many
detalls concerning the logging and display of performance data. In this version, the user
interface contains two kinds of formas. One is in text form, which is integrated with the
amulator program. The other isin graphica form, which is an adjunct program for the smulator
program (described in Section 4). This section only describes the text user interface.

The user should first design the network topology with the necessary parameters before sarting
the program. Thiswill ad in the entering of the data into the Smulator.



3.1 Starting the Program

After the “C” program of the amulator is compiled by running the “meakefile’(i.e. a the
command line type make or make —f makefile), one can execute the ATM PNNI Routing
Protocol Simulator by typing the following a the command line:

aprops.exe seed_value out_configuration file “or”

aprops.exe seed value output_configuration_file input_configuration file

This invokes the text user interface followed by the execution a the interface to create a PNNI
network configuration. The seed_value is an integer that is used as an input parameter to the
random function, srand (). The output_configuration_file isafile that will be created that will
contain the user’s network configuration as entered during the running of the text user interface.
This helps to automae the creation of a network configuration file The
input_configuration_file is afile that contains an exising network configuration. This permits
the user to reuse a previous network configuration without the need to reenter the data.

Note that, the output_configuration _file and input_configuration_file can not use the same
name. The user can directly use the smulator program (i.e. the text user interface) to create an
output_configuration_file. As an option, the user may first use the adjunct graphicd user
interface to creste a network configuration file, and then use this file as an
input_configuration _file a the command line.

3.2 User Interface

For the text User Interface (Ul), it dlows the user of the smulator to create the network
topology and to st the parameters for smulation runs. The user is firgt presented with the
amulator’s default values, which the user is asked to accept or modify. After the defaults are
s, then the user can define the network topology. The user interface then prompts for the totdl
number of lowest level nodes, followed by questions for each node. Next the node connectivity
is configured. The connectivity of nodes is processed according to the sequence in which the
nodes were entered. After the network topology is entered, the user is asked to confirm the
input. If the user does not accept the current configuration, the program will terminate and the
user must rerun the program. If theinput is acceptable, then the Ul prompts for possible failures
to be smulated. Next the amount of time that the program is to smulae is entered. The
method of the output display is entered. Note that, due to the condraints of the text user
interface, the user cannot modify the network topology during topology configuration. When
using the adjunct graphica user interface, the user can easlly modify the network topology (e.g.
add/remove a node or link).



The Ul provides many options to cover many kinds of Stuations. It permits the user to define
the running smulation period so as to observe the running results. It aso permits the user to
define alink failure or node failure time and link restore or node restore time,

When defining a component for the firgt time, a question will gppear automaticaly, asking for the
required information. Each entry isterminated by a Enter. A Enter with no entry will accept
the default value. No other action is possible until al requested information has been entered. If
the entered value is not correct, a warning message will gppear, and then a new value must be
entered. Asthe following example shows.

3.2.1 An Example

The user crestes the following network topology:

1 2
4 3
Assume that:
1) dl network nodes and links are active at once, that is, al nodes are turned on &t the
sametime;

2) dl nodes are located in the same peer group;

3) dl nodes are configured with different peer group leadership priorities;

4) dl nodes have the same node processing overheads for the same packet types,
5) dl links have the samelink dday;

6) After smulation for awhile, acertain link fallsand later onit isrestored.

The following text is an example of the smulator screen seen by the user when a network
configuration is created.

--> aprops.exe seed_value output_configuration_file
Welcometo APROPS

APROPS will ask some questionsfor entering a PNNI network topology:
1) PNNI simulation option (e.g. PTSP bundling);
2) Default node processing overheadsand refresh interval;
3) Node number and node configuration (e.g. node addressing, node level);
4) Connectivity configuration (e.g. links);



5) Whether to simulatealink failure or node failure and then to
restoreit (e.g. failuretimeand restoretime);

6) Simualation period and output choice;

7) Detailsfor thelink failure or nodefailure, if any;

8) Detailsfor restoring thelink failure or nodefailure, if any.

Theoption for PTSP during database synchronization:
One PTSP which bundlesall routing database information in a node (0)
One PT SP which bundles each routing database information in a node (1)
PTSP: PNNI Topology State Packet
Select (0/1: default=0) ? Enter
Theoption for PTSE refreshing:
OnePTSP bundlesall PTSEsin anode (0)
OnePTSP bundleseach PTSE in anode (1)
PTSE: PNNI Topology State Element
Select (0/1: default=0) ? 1Enter

Current default node processing over heads and Refresh Interval arethethe following:
1)The node processing over head for Hello packet is 0.1 second.
2)The node processing overhead for Database Summary packet is 0.3 second.
3)Thenode processing over head for PTSE REQUEST packet is 0.5 second.
4)The node processing over head for PTSP packet is 0.5 second.
5)The PTSE refresh interval is 1800.0 seconds.

Would you liketo change the current default values (y/n: default=n) ? yEnter

Thenode processing over head (default=0.1 second) for Hello packet ? Enter

Thenode processing overhead (default=0.3 second) for Database Summary packet ? Enter
The node processing overhead (default=0.5 second) for PTSE REQUEST packet ? Enter
Thenode processing over head (default=0.5 second) for PT SP packet ? Enter

ThePTSE refresh interval (default=1800.0 seconds) ? 1200Enter

Notethat in the following inputs:

1) All ATM addresses must be unique!
Example: 0x47.00.05.80.00.5a.ff.00.00.00.02.03.7¢.00.02.€1.0f.81.01.00

2) Tosimplify the program, the Node L evel uses only multiples of 8 bits,
for example, if thislevel is56, the next higher level is48.
Notethat, right now the program supportsonly one higher level.

3) Each node can connect to at most 10 other nodes at the lowest level.

4) Therecan beat most 3 physical links between two nodes of same peer group at the lowest level,
or at most one physical link otherwise.

5) Theglobal clock starting point is 0.0 second.

With the above information,
what isthetotal number of nodesfor thisPNNI network topology ? SEnter

ATM address of thisnode ? 47.0005.80005aff00000002037¢.0002e10f8101.00Enter

NodeL evel ? 56Enter

Peer Group Leadership Priority (default=0) ? 1Enter

Will this node use different node processing overheadsor refresh interval (y/n: default=n) ? Enter
When will this node become active (default=0.0 second) ? Enter

You have entered 1 nodesin thetopology !

ATM address of thisnode ? 47.0005.80005aff 00000002037¢.0002e10f8102.00Enter
NodeL evel ? 56Enter



Peer Group Leadership Priority (default=0) ? 2Enter

Will this node use different node processing overheadsor refresh interval (y/n: default=n) ? Enter
When will this node become active (default=0.0 second) ? Enter

You have entered 2 nodesin thetopology !

ATM address of thisnode ? 47.0005.80005aff00000002037¢.0002e10f8103.00Enter

NodeL evel ? 56Enter

Peer Group Leadership Priority (default=0) ? 3Enter

Will this node use different node processing overheadsor refresh interval (y/n: default=n) ? Enter
When will thisnode become active (default=0.0 second) ? Enter

You have entered 3 nodesin thetopology !

ATM address of thisnode ? 47.0005.80005aff00000002037¢.0002e10f8104.00Enter

NodeL evel ? 56Enter

Peer Group Leadership Priority (default=0) ? 4Enter

Will this node use different node processing overheadsor refresh interval (y/n: default=n) ? Enter
When will thisnode become active (default=0.0 second) ? Enter

You have entered 4 nodesin thetopology !

ATM address of thisnode ? 47.0005.80005aff00000002037¢.0002e10f8105.00Enter

NodeL evel ? 56Enter

Peer Group Leadership Priority (default=0) ? SEnter

Will this node use different node processing overheads or refresh interval (y/n: default=n) ? Enter
When will thisnode become active (default=0.0 second) ? Enter

You have entered 5 nodesin thetopology !

How many nodes ar e connected to specified node 47.0005.80005aff00000002037¢.0002e10f8101.00
? 3Enter
First connected node'sATM addr ess ? 47.0005.80005aff 00000002037¢.0002e10f8102.00Enter
How many physical links (default=1) exist between two nodes? Enter
The déday (default=0.0001 second) for the physical link 1 ? Enter
Isthe physical link connected in theinitial configuration?
(That is. doesthe physical link 1 become active when both nodes
at theend of the physical link 1 areactive/up ?) (0)
Or isthephysical link 1 not currently connected, but will be sometimein the future after both nodes
areactive, i.e., any value greater
than both node active times 0.000000 and 0.000000 (1) ?
Select (0/1: default=0) ? Enter
Second connected node'sATM addr ess ? 47.0005.80005aff00000002037¢.0002e10f8104.00Enter
How many physical links (default=1) exist between two nodes? Enter
The déday (default=0.0001 second) for the physical link 1 ? Enter
Isthe physical link connected in theinitial configuration
(That is. doesthe physical link 1 become active when both nodes
at theend of the physical link 1 areactive/up ?) (0)
Or isthephysical link 1 not currently connected, but will be some
timein the futureafter both nodesare active, i.e., any value greater
than both node active times 0.000000 and 0.000000 (1) ?
Select (0/1: default=0) ? Enter
Third connected node'sATM addr ess ? 47.0005.80005aff00000002037¢.0002e10f8105.00Enter
How many physical links (default=1) exist between two nodes? Enter
The déeay (default=0.0001 second) for the physical link 1 ? Enter
Isthe physical link connected in theinitial configuration
(That is. doesthe physical link 1 become active when both nodes
at theend of the physical link 1 areactive/up ?) (0)



Or isthephysical link 1 not currently connected, but will be some
timein thefutureafter both nodesareactive, i.e., any value greater
than both node active times 0.000000 and 0.000000 (1) ?

Select (0/1: default=0) ? Enter

How many mor e nodes ar e connected to specified node
47.0005.80005aff00000002037¢.0002e10f8102.00
? 1Enter
Connected nodesATM addr ess ? 47.0005.80005aff00000002037¢.0002e10f8103.00Enter
How many physical links (default=1) exist between two nodes? Enter

The déday (default=0.0001 second) for the physical link 1 ? Enter

Isthe physical link connected in theinitial configuration
(That is. doesthe physical link 1 become active when both nodes
at theend of the physical link 1 areactive/up ?) (0)

Or isthephysical link 1 not currently connected, but will be some
timein the futureafter both nodesareactive, i.e., any value greater
than both node active times 0.000000 and 0.000000 (1) ?

Select (0/1: default=0) ? Enter

How many more nodes ar e connected to specified node
47.0005.80005aff00000002037¢.0002e10f8103.00
? 1Enter
Connected nodesATM addr ess ? 47.0005.80005aff00000002037¢.0002e10f8104.00Enter
How many physical links (default=1) exist between two nodes? Enter

The déday (default=0.0001 second) for the physical link 1 ?

Isthe physical link connected in theinitial configuration
(That is. doesthe physical link 1 become active when both nodes
at theend of the physical link 1 areactive/up ?) (0)

Or isthephysical link 1 not currently connected, but will be some
timein the futureafter both nodesare active, i.e., any value greater
than both node active times 0.000000 and 0.000000 (1) ?

Select (0/1: default=0) ? Enter

How many more nodes ar e connected to specified node
47.0005.80005aff00000002037¢.0002e10f8104.00
? OEnter

How many more nodes ar e connected to specified node
47.0005.80005aff00000002037¢.0002e10f8105.00
? OEnter

The Topology isthe following:

(Thisisorigind topology)
Node 1 (seq): 38.a0.47.0005.80005aff00000002037¢.0002€10f8101.00
Node 2 (seq): 38.a0.47.0005.80005aff00000002037¢.0002€10f8102.00
Node 3 (seq): 38.a0.47.0005.80005aff00000002037¢.0002€10f8103.00
Node 4 (seq): 38.a0.47.0005.80005aff00000002037¢.0002€10f8104.00
Node 5 (seq): 38.a0.47.0005.80005aff00000002037¢.0002€10f8105.00

Nodes 1 2 3 4 5
1 @ M@
2 *(1)

3 (1)



4
5
The'*' meansthat both nodes ar e connected;
the'(1/2/3)' isthe number of physical links between two nodes.

A configuration file has been created. If you want to change any value,
you must rerun the program. If all valuesare correct, then continue!
Doyou want torerun (r) or areall valuescorrect (c) (default=c) ? Enter
Do you want to simulate any link failure or node failure (y/n: default=n) ? yEnter
When doesthefailuretake place (seconds) ? 200Enter
Do you want to smulate a physical link failure (1) or node failure (n) (default=n) ? IEnter
Thetwo nodesfor failed physical link arethefollowing:
First node'sATM address ? 47.0005.80005aff00000002037¢.0002e10f8102.00Enter
Second node'sATM addr ess ? 47.0005.80005aff00000002037¢.0002e10f8103.00Enter
Thereis 1 physical link(s) between thesetwo nodes!

Doyou want torestorethelink failure (y/n: default=n) ? yEnter
When isthefailurerestored (seconds) ? 450Enter
Therestored link islocated between the two nodes:
47.0005.80005aff 00000002037¢.0002e10f8102.00
47.0005.80005aff 00000002037¢.0002e10f8103.00

How much time do you want the program to smulate (seconds) ? 600Enter
Do you want to output data count per link each time (y/n: default=n) ? Enter

(This will give user the results about transmitted data for different packets or totd amount a
both directions of each link a any event execution time or at the end.)

Thesimulation results of program arethefollowing:

I1'The PNNI hasreached stability of database synchronization!!!
for thefollowing nodes:

(Nodes are the same as before)

Thedata (bytes) transmitted until 3.601101 seconds ar e the following:
From nodeto node: Hello, DBS, REQ, PTSP, ACK, Total-Hdlo, Total
1to2(link 1): 318, 212, 53, 2226, 636, 3127, 3445
2to1(link 1): 318, 212, 53, 1484, 954, 2703, 3021
1to4 (link 1): 318, 212, 53, 2226, 636, 3127, 3445
4to1(link 1): 318, 212, 53, 1484, 954, 2703, 3021
1to5(link 1): 318, 212, 53, 3233, 212, 3710, 4028
5tol(link 1): 318, 212, 53, 477, 1272, 2014, 2332
2to3(link 1): 318, 212, 53, 2226, 636, 3127, 3445
3to2(link 1): 318, 212, 53, 1484, 954, 2703, 3021
3to4(link 1): 318, 212, 53, 1484, 954, 2703, 3021
4to3(link 1): 318, 212, 53, 2226, 636, 3127, 3445
Thetotal (total-hello) data (bytes) and aver age (bytes/second/link) are:

32224 (29044) and 1789.674880 (1613.062227) !

I1The PNNI hasreached stability of PGLE !!!
for thefollowing nodes:
(Nodes are the same as before)
Thedata (bytes) transmitted until 53.623013 seconds ar e the following:



From nodeto node: Hdllo, DBS, REQ, PTSP, ACK, Total-Hdlo, Total

(leave out)
Thetotal (total-hello) data (bytes) and aver age (bytes/second/link) are:
46693 (38743) and 174.152841 (144.501393) !

(smulation until 200 seconds)

Current topology isthefollowing:
(sameasorigind one)

Thetwo nodesfor failed physical link 1 arethe following:

47.0005.80005aff00000002037¢.0002e10f8102.00
47.0005.80005aff00000002037¢.0002e10f8103.00

(smulation until 450 seconds)

Original topology isthefollowing:
(leave out)

New/Current topology with link failure or nodefailureisthefollowing:

Nodes 1 2 3 4 5
(1) (D)@

*(1)

=

a b~ wiN

Therestored link 1islocated between two nodes:
47.0005.80005aff00000002037¢.0002e10f8102.00
47.0005.80005aff00000002037¢.0002e10f8103.00

IIThe PNNI hasreached stability of database synchronization!!!

for thefollowing nodes:
(Nodes are the same as before)
Thedata (bytes) transmitted until 452.900901 seconds ar e the following:
From nodeto node: Hello, DBS, REQ, PTSP, ACK, Total-Héllo, Total
(leave out)
Thetotal (total-hello) data (bytes) and aver age (bytes/second/link) are:

93174 (47382) and 41.145425 (20.923783) !

(smulation until 600 seconds)

10



3.3 Operating the Simulator

3.3.1 Loading a Network Configuration

There are three ways to specify a network configuration for the program to smulate.

1. Create a network configuration while in the Smulator program using the text user interface
(as previoudy described). Using this approach, the user decides on the appropriate
components, their characteristics and interconnections.

2. Reuse an exiging network configuration by using one of the following two methods.
i) access
aprops.exe seed_value output_configuration_file input_configuration_file

i) redirect
aprops.exe seed_value output_configuration_file < input_configuration_file

Theinput configuretion file can be crested in one of three ways.

1) by directly coping the output_configuration file from bullet item #1 above;

2) by manud entry of an ASCII file by a user who is very familiar with the usage of the
smulator program, or

3) by using the output_configuration_file from the adjunct graphica user interface (see section
4).

A sample input_configuration file follows. Each line of this configuretion file contains a
response for each question asked by the User Interface.

Note When the usxr uses the redirection method, if the name of the
output_configuration file dready exids the redirection method will fal. The
output_configuration_file must be renamed and then tried again.

Note: Theinput_configuration_file cannot contain any comments.

0

1

y

0.1
0.3
0.5
0.5
1200
5
47.0005.80005aff00000002037¢.0002e10f8101.00
56

11



1

n

0.0
47.0005.80005aff00000002037¢.0002e10f8102.00
56

2

n

0.0
47.0005.80005aff00000002037¢.0002e10f8103.00
56

3

n

0.0
47.0005.80005aff00000002037¢.0002e10f8104.00
56

4

n

0.0
47.0005.80005aff00000002037¢.0002e10f8105.00
56

5

n

0.0

3
47.0005.80005aff00000002037¢.0002e10f8102.00
1

0.0001

0
47.0005.80005aff00000002037¢.0002e10f8104.00
1

0.0001

0
47.0005.80005aff00000002037¢.0002e10f8105.00
1

0.0001

0

1
47.0005.80005aff00000002037¢.0002e10f8103.00
1

0.0001

0

1
47.0005.80005aff00000002037¢.0002e10f8104.00
1

0.0001

0

0
0
Cc
y
200
I

47.0005.80005aff 00000002037¢.0002e10f8102.00
47.0005.80005aff 00000002037¢.0002e10f8103.00

12



450
600

3.3.2 Creating a Network Configuration

Creating a network configuration tarts with a written network configuration plan, which is
based on the total number of nodes at the lowest leve.

3.3.2.1 Creating Defaults.

This smulation has some built in defaults, which by default apply to the entire network
configuration. The initid defaults are PTSP bundling, node processng overheads for different
types of packets, PTSE refresh interva, and physcd link delay. These defaults may be
changed to gpply to some or dl of the components in a network configuration.

3.3.2.2 Creating Components.

There are two types of components. node and link. Nodes are created when the user is asked
for the tota number of nodes at the lowest level. For each node, the user isin turn prompted to
enter values for each parameter, including ATM address, node level, peer group leadership
priority, and node active time, which will specify the component’ s characterigtics in the network.
After dl the required parameter values are entered, the component will be created. The relative
location of the component in the network will be determined by the connectivity between this
component and other components.

3.3.2.3 Linking Components.

After the node components have been created, they are connected by creeting physica links.
Thisforms anetwork. A physicd link is a network component with associated parameters. A
physca link is specified by the two nodes that are connected by that link. Meaning that for
each node, the user must enter the other nodes to which this node is connected and then enter
the number of links connecting these two nodes.

However, the user needs to know the network topology. After making sure thet thereis alink
between two nodes, and al the required parameter vaues of the link are entered, the link will be
created.

3.4 Operational Features

This dmulator provides severd features, which may be used to enhance the display of
information and to modify the network that was created.

13



3.4.1 Displaying Information about the Network

There are two methods for outputting the display information. One ligts the executed events
followed by an output summary. The other lists an output summary for each execution of a
group of events.

3.4.2 Making Modifications

For the text user interface, the only way to make modifications for the beginner is to rerun the
program. If the user has specified a configuration file (i.e., ASCII file), it is easer for the user to
modify afew parameters, which depended on the experience. If the user isfamiliar with the text
user interface and the configuration file, it is not so difficult for the user to modify some of the
parameters of the PNNI network topology. For example, if the user wants to modify the peer
group leadership priority for a certain node, the user can directly search for the node and modify
it. The sameis true for the ATM address, and node level. Note that, the modification of the
ATM address must be modified in dl other relevant places. If the user wants to Smulate a link
failure and then restore it, the user only needs to specify severd lines, for instance:
Cc

y
200

I
47.0005.80005aff 00000002037¢.0002e10f8102.00
47.0005.80005aff 00000002037¢.0002e10f8103.00

y
450

600

The falure and restore configuration contains 7 lines between the flag, “c’, and smulation
period, “600”. For any other link failure, the user only needs to modify the ATM addresses
plus the link sequence if there exists more than one physicd link. [If the user pecifies a node
falure, it will have the fallowing format:

Cc

y
200

n
47.0005.80005aff00000002037¢.0002e10f8102.00

p

y
450

600

Neverthdess, the adjunct graphical user interface should be used when making modifications,
snce it makes it much easier for the user to add, remove or modify any nodes and links.

14



3.4.3 Processing of Partitions

Normdly there is no partitioning within a peer group. However, the smulator program provides
the mechanism and capability to process two or more partitions for one peer group due to alink
failure or node failure. In each partition, the database synchronization and PGL eection will be
preformed. If the partitioned peer group has an outside link connecting with other peer groups,
it may perform higher leve protocols, including the SVCC-based RCC Hello protocol, SVCC-
based RCC DBS protocol and LGN Horizonta link Hello protocol, etc., which depends on
their repective connectivity with other peer groups.

3.4.4 Determination of Stability

Using the amulator program, the user can do many evauations, which include the time it takes
for the PNNI routing protocol to reach stability and the amount of data required for PNNI
operations aone, both in reaching sability and for maintaining stability. As seen in the output of
the above smulation example, the determination of stability is an important festure, which gives
the user a generd vison of the program running.  With this cgpability, the user can easly find
when the protocol will reach stability and how much data is needed to reach gability. Alsoitis
easy to determine the maintainability based upon reaching stability.

For the lowest leve, the stability includes the completion of database synchronization and PGL
eection. For the higher levd, the dability only includes the completion of database
synchronization. |If there is alink failure or node failure, the PNNI routing protocol may reach
again the stability of database synchronization or PGL dection, that depends on the connectivity
among al nodes within one peer group and whether the failed node is just a PGL for one peer
group, etc. The peer group may be partitioned due to the link failure or node failure, which may
invoke more than one SV CC-based RCC existing between two adjacent peer groups and the
determination of stability will be more complicated.

4 Adjunct Graphical User Interface

The purpose of this adjunct graphica user interface is to provide an easier method for entering
the network configuration and to provide an automated method for modifying existing network
configurations.

4.1 Introduction

The Adjunct Graphica User Interface (GUI) for the smulator program (APRoPS) has been
developed by using the Td/Tk programming language running on a SUN SPARCdation
platform using SUnOS Release 5.5.1 Generic. Badicdly, the GUI is composed of the following
windows in turn:

15



A file name window is used to ask the names for the output configuration file and
the input configuration file, if any.

An option window is used to setup the options for PTSP bundling during database
synchronization and for PTSE refreshing.

A default value window is used to setup the default node processing overheads and
the refresh interva for al nodes.

A node configuration window is used to setup ATM address, node level, peer
group leadership priority, and node active time.

A connectivity configuration window is used to setup the connectivity, i.e. physica
linksfor al nodes.

A modification window is used to add, remove and modify any node or any link, if
ay.

A falure window is used to detal the link faillure or node falure informetion,
including falure time, failed link and link sequence, etc.

An output window is used to setup the smulation period and output option.

4.2 Operating the GUI

Please make sure that you have averson of TCL/TK (at least verson 4.2) ingtalled on your
SunOS and it isin your path, then run the TCL/TK program, interface, a the command

prompt.

4.2.1 The File Name Window

ik

APROPS Graphical User Interface

What is the name of output configuration file 7 fred

Do you want to overwrite it {y/n: default=n} ¥ ¥

Do you want to use any existing input configuration file {yfn: default=n} ? n

continue |

16



The first window prompts the user for the name of the output configuration file, which is to be
created. If the user typesin a name of which afile dready exigts by that same name, the GUI
will show awarning message (as shown above) and asks whether or not it is to be overwritten
The user isthen asked whether or not to use an existing input configuration file. If yes, then the
user must enter the name of the exiding input configuration file. Findly push the “continue’
button to go to the next question or the next window.

17



4.2.2 The Option Window

rﬂ APROPS Graphical User Interface

Node Option for Simulation

The option for PTSP during database synchronization:
One PTSP which bundles all routing database
infonmation in a node (0}
One PTSP which bundles each routing database
information in & node (1)
PT3P: PMNHI Topology State Packet

Select (011: default=03 ¢ 0

The option for PTSE refreshing:
One PTSP bundles all PTSES in one node (0}
One PTSP bundles each PTSE in one node (1)
PTSE: PMHI Topology State Element

Select (011 : default=0) 7 |0

continue

The user selects the options according to the practicular smulation requirements.  The default
sectionis“0’. Thefigure showsthat the default was accepted for both questions.

4.2.3 The Default Value Window

fﬂ APROPS Graphical User Interface

Hode Processing Overhead and Refresh Interval

Current default node processing overheads and Refresh Interval are the following:
1)The node processing overhead for Hello packet is 0.1 second.
Z)The node processing overhead for Database Summary packet is 0.3 second.
3)The node processing overhead for PTSE REQUEST packet is 0.5 second.
4)The node processing overhead for PTSP packet is 0.5 second.
3)The PTSE refresh interval is 1800.0 seconds.

Would you like to change the current default values (yMm: default=n) ? |n

continue

All of the above default vaues were obtained from the practica measurements for certain ATM
switch sysems. The user can modify these values accordingly. If the user answers yes, then

another window is opened to change vadues. Figure shows the acceptance of the default vaues
for these parameters.

18



4.2.4 The Node Configuration Window

= AFEOPS Craphiral User itarfars

Hude: Curifyuiraliun

W (v eatares] Hie Tallmng | 008E: Sy aidireza of Ma node T 170005 3000 3200000005700 1051 22 00
S TRIE TR E AT LA R I
g HOIL THES R 2L TR TE Ry TR H L TARE T TN R ] TR TP TL, ) TR )]
Mok | Al i

Haka: The raca bavel should ba 0 reags 1- 1040 aid rdiigs o 8 bits,
Feer Ginmup Ieisdiasboge Promaly Qde odl=10p II'
Will Wi ke w2 il feren | node prseecny evechiesds o relnesbinlerssl Cein: defaill-n) T

Whats ‘will thiz tada hacoma Setive (Harpull 0.0 3scond) 7 0.l

_,." Hulaz: Bl bl czheck siieimng puonl s L saiared .

H I ¥ cartiiue |

In thiswindow, the left box listisdl of the nodes the user has entered, and the right Sde items are
the current node' s values, that the user will enter. For the user’s convenience, once a node' s
ATM address has been entered and appears in the box on the I€ft, it can be copied. The user
can click on a previous ATM address from the left box. The clicked ATM address will show
up a the right side, and then the user only needs to modify the related bytes.

4.2.5 The Connectivity Configuration Window

r‘;l APROS Graphical Usar Inkarfars

Copnecti=Ity Conficukatinn

Pl indAs ara BARA as Do s Hnor a1y nisliss A6 SRnnseLed b U Specsed i ©
3 (0 065 o DS T IO 02 3 7 01801 5. B DM 5o o o o] D5 5557 NI .
7. 005 M0 DS RTIOI00N: Third conwactad nocea ATH abdaaz 7
L I H I H | 47 000 . BO0 ST IO 0005037 02 D1 105
<7000 A M RTTIO0000: | | rndecs cawncted tn spocse wies| How rsny e saeal ks getamtt=1 § belwiens Lun nses cuist, & 1
O] M LT R e HRTTER JH TR T2
A7 000 S B D) 5o e WO RE V5 e | . . =
T o] i Thee ey (o Fawl 100001 wecursd ] Tur T pheyicd ok 150 000
o7 01 o0 5. B D 5o O o W1 D55 I Ihie physicad Bk 1 comrecled @ e indlz] configoeslion
[That. [ HoBs the phy3icel Nk | Acome BEHYE WhEn ot hodes
AL LA @l 0l K plvgsical ik 1 Ava Acesmp T (g
CF e Lhie pleyzsi i ok, 1 ol jurreniby iorensced, bl sl e sonn
thme In the Tuiure iter Wk paces aE Botive, LE., any vBIUE reeter
than Ratly iwode acthna thmes 0.0 and 0.0 ¢y T
n Salpek (0/12 datault 0] 7 [0
4 | .
Ehannnue
| I ] Q

In this window, the leftmost box lists dl of the entered nodes in the PNNI network topology.
The specified node means the node currently asked for the connectivity. Shown below the
specified node's ATM address are dl of the other nodes that are dready connected to the
gpecified node. The right sde asks about the physical link delay and link active time for this
connection.

19



4.2.6 The Modification Window

rﬂ APROPS Graphical User i1,

Modify Question

Do you want to add a node (D)
remove a node (1)
modify a node (2]

add a link (3)
remove a link {4}
modify a link {a)
exit (6]

Select (0~6) ? |0

continue |

The user can choose from this list to make any modification to the existing PNNI network
topology. There is no limit to the number of modifications that can be preformed a this time.
Thiswindow is only displayed after the user has completed entering a configuration and the user
has selected to modify the current configuration, instead of accepting the configuration asis.

4.2.7 The Failure Window

Bk APROPS Graphlcal User Interface k

Failure Configuration

The two nodes for failed physical link are the following:

_ second node's AlM address ¥
|17.0005.800052ff00000002037 |47 0005.00005af00000002017 ¢.0002e1 001 02.00
1 ;
-l o continue
Hudes conmecled W Nirsl node:

47 .0005.80005aff00000002 |
47 .0005.80005aff00000002

=l

| L

Firg of dl, the link failure or node failure is asked only when the network topology configuration
is finished. As seen in this window, after the first node is sdected, the choice of the second

20



node is limited to one of those, which have connections with the firsd node. For the user’s
convenience, the user does not need to manually type in the second node's ATM address. The
user can click on the sdlected ATM address from the “Nodes connected to first node’ box.

4.2.8 The Output Window

B APROPS Graphical User Interface

simulation Period and Output Option

Hows much time do you want the program to simulate {seconds) ? 200

Do you want to output data count per link each time (yf: default=n} ? |n

continue |

In thiswindow, the user needs to specify the smulation period and output option. However, the
smulation period must be greater than the failure time and restore time, if any. If the user enters
awrong vaue, the GUI will give the user a warning message, and provide an entry o that it
may be corrected.

5 Simulator Concepts

5.1 Simulator Clock

The amulator is discrete-event driven, meaning that the events of interest occur at discrete
pointsin time. Under a discrete-event modd, the time parameter is conceptudly continuous and
can thus be arbitrarily increased. The discrete changes in states or events occur at any red time.
The smulation software contains an event manager (EM), which provides a generd facility to
schedule and send or fire an event. The function of the EM is to maintain and update an event
queue condgting of events that are arranged in time order of execution, including the timer
expiraion events (eg. Hello timer and Inactivity timer). The EM dso maintains a globa clock
to keep track of the amulation time. The accuracy of the globd clock is predefined in the
smulaor program. The time accuracy is used to determine whether two or more of the time
stamped vaues for the given events are to be consdered the same time. A cycle of discrete-
event amulation is depicted by the following steps:
1) When the clock is just not earlier than the earliest occurrence time, the EM sdlects
the events with the earliest occurrence time in the event queue, including the timer

21



expiration events. Note that there may be more than one sdected event with the
earliest occurrence time within the time accuracy.

2) The EM fires the sdected events. When the sdected events are fired they are
removed from the event queue, and the related event routines are executed.
Furthermore, firing the events may cregte one or more future events, which are then
inserted at the appropriate locations in the event queue arranged in time order of
execution.

3) The globd clock hops to the next earliest occurrence time, that is, the time stamp
for thefirst event in the event queue. This approach is used to save CPU resources.
The heart of the Smulator is aloop executing the above cycle until the smulation is
terminated.

5.2 ATM Switch

The ATM switch is the component that runs the PNNI protocols (i.e, FSMs). It sends or
floods events over physicd links. The firing of the event and the storing or sorting of the future
event(s) is completed by the Event Manager. Except for the necessary node processing
overheads based upon the network configuration, it is assumed that the switch can immediately
execute the event as soon as the switch accepts the event without any additiond dday (eg.,
even if the switch is busy processing other tasks and the CPU resources are limited).

5.3 Link Components

A link component smulates the physical medium (eg., optica fiber) on which PNNI
packetsmessages are tranamitted. The user may specify the physicd link dday and link active
time. An important feature for the link component is to demondrate that there exists
connectivity between any two switches. If thereisno link between any two switches, then there
is no direct message exchange between these two switches.

5.4 Component Failure/Restore

Failures of ared network, such aslink or node fallures, are smulated as component failures. A
component failure means that the component is Smulaing no activity. The component failure
may be a link falure or node falure. The component falure time is the time when the
component begins to fall. The component restore time is the time when the component is
restored to an active status.

A falurea anodeor alink (at any hierarchica level) will dways cause a detectable time-out at

the other node waiting for processing with the failed node/link.
A link failure will causethe“Link Down” event at both nodes of the link.

22



A physicd node falure will cause the “Link Down” event a opposite Sdes of dl the
attached links.

A logicd node failure will be detected after the “Inactivity Timer Expired” event at the
opposite nodes of al the attached links.

Later on, the link restore will cause the “Link Up” event at both sdes of the link. The node
restore will causethe “Link Up” event at both sides of al links attached to the restored node.

For the above falure, the user only needs to specify the lowest levd link fallure or node failure.
If exiging higher level connections and the faled link or node is among the corresponding
SVCC-based RCC, the link failure or node failure may invoke the SV CC-based RCC unusua
release, i.e. higher leve “Link Down” events, and/or LGN horizonta link down. However, this
is different from the lowest level link down case, except for the corresponding outside link
down, there is dtill another choice to reestablish the SVCC-based RCC through other routes
before redly rdeasing the origind one. If the falled node is just the PGL for one peer group,
there isa LGN failure (higher leve logicd node failure). After redecting a new PGL for the
peer group, a new LGN is generated, which may create a new SVCC-based RCC with
adjacent LGNs. However, two or more partitions may exist due to either alink falure or node
falure, which may generate two or more LGNs for one peer group.

Note: The user can only specify onefalure a onetime.

5.5 Output Results

The following text is an example of the Smulator screen seen by the user when the smulation is
running or terminated:

Node 1 (seq): 38.a0.47.0005.80005aff 00000002037¢.0002e10f8101.00

Node 2 (seq): 38.a0.47.0005.80005aff 00000002037¢.0002e10f8102.00

Node 3 (seq): 38.a0.47.0005.80005aff 00000002037¢.0002e10f8103.00

Node 4 (seq): 38.a0.47.0005.80005aff 00000002037¢.0002e10f8104.00

Node 5 (seq): 38.a0.47.0005.80005aff 00000002037¢.0002e10f8105.00

Thedata (bytes) transmitted until 149.393393 seconds ar e the following:

From nodeto node: Hdlo, DBS, REQ, PTSP, ACK, Total-Hdlo, Total

1to2 (link 1): 1908, 212, 53, 2968, 848, 4081, 5989

2to1(link 1): 1908, 212, 53, 1802, 1378, 3445, 5353

1to4 (link 1): 1908, 212, 53, 3127, 848, 4240, 6148

4to1(link 1): 1749, 212, 53, 1802, 1484, 3551, 5300

1to5 (link 1): 1908, 212, 53, 3869, 424, 4558, 6466

5tol(link 1): 1749, 212, 53, 901, 1802, 2968, 4717

2to3(link 1): 1749, 212, 53, 3127, 848, 4240, 5989

3to2(link 1): 1749, 212, 53, 1802, 1484, 3551, 5300

3to4(link 1): 1908, 212, 53, 2385, 1484, 4134, 6042

4to3(link 1): 1908, 212, 53, 3127, 1166, 4558, 6466

Thetotal (total-hello) data (bytes) and aver age (bytes/second/link) are:
57770 (39326) and 77.339431 (52.647576) !

23



The output datais given in terms of bytes transmitted per link at a certain point intime. The link
information for each node pair is plit into unidirectiona output. Each node pair may dso have
multiple links (i.e, pardld physcd links). Thisis shown by the“(link x)”. The“(link 1)” means
the first parald physicd link between two nodes. The data is grouped into the type of data
transmitted. Hello is the amount of data transmitted in Hello packets. The DBS, REQ, PTSP,
and ACK are the amount of data transmitted in Database Summary packets, Request packets,
PTSP packets, and Acknowledgement packets, respectively. The Totd is the totd amount of
data from dl the PNNI routing packets sent. The “Totd-Hello” is the Totd amount of data
minus the amount of data generated by the Hello packets (Tota column minus Helo column
equas Tota-Hello column).

6 Overview of the Simulator for the Programmer

This part of the document briefly describes the ATM PNNI Routing Protocol Simulator
Software. It is assumed that the reader is familiar with the “C” Language programming
techniques, conventions, and notations, and has the source code of the ATM PNNI Routing
Protocol Smulator available.

The smulator program includes a text User Interface that provides the user with a means to
define the parameters and connectivity of the network, log data, to save and load the network
configuration, and to display the topology of the network. In addition to the user interface, the
smulator has an event manager that can be used to schedule events. The execution of an event
will cause actions or future events to happen, which are modded separately by a number of
protocol modules. The modd being smulated and the actions of the events are entirely
determined by the PNINI routing protocol specification, not by the framework of the smulator.
The person who implements the protocol modules can decide how they will specify the PNNI
routing protocol; the smulator framework only provides the means to schedule events and to
communicate with the user.

The smulator software congsts of:
The source code of the smulator is written in severd files (defined as aprops.c,
em.c, error.c, |_hello.c,|_dbsc, | flooding.c, |_pgle.c, |_refresh.c, |_failure.c,
h_hello.c, h_dbs.c, h_flooding.c, h_horizontal.c and h_refresh.c).
All preprocessor macros and al data structures are globaly used as a whole
(definediin aprops.h).

The amulator software operates under the design criteria that:
There is no limitation on network topology Sze, that is, the user can secify the
network topology as large as he wants within the congtraints of the hardware (i.e,
memory).

24



There is no limitation for the event queue no matter how many events are generated
by the various components except for the condraints of the hardware (i.e,
memory).

7 Assumptions for the Simulator

The following assumptions were made.

7.1 Assumptions to simplify the ATM PNNI simulator

Traffic Characterigics

>

>

Only PNNI routing messages are studied. No other traffic is considered to be
present.

No errors (e.g., bit errors), except for the pre-defined events (i.e., link or node
falure), are considered.

Network Hierarchy

» The lowest level nodes are physical nodes configured with distinct addresses.
The possible highest and lowest hierarchica level of a hode can be determined
by the node' s configuration, that is, ATM address and node level.

» The amulator only supports two levels of routing hierarchy: the lowest level and
one higher levd.

» The supported number of nodes in one peer group is at most 100.

» The supported number of lowest level peer groupsis at most 20.

Packets

» The contents of Hello, Database Summary, PTSE Request, PTSP and PTSE
Acknowledgment packets are ignored.

» The packet sizes and PTSE sequence number are considered in order to
caculate the amount of data tranamitted and differentiate the PTSEs. Theinitid
database for each node contains the Noda Information Group (1G) and Interna
reachable ATM address G with sequence number 1. At the lowest leve, each
Link IG includes the linked remote node and sequence number.

Node Connectivity

» A dnglenodeis alowed to have connectivity to & most 10 other nodes.

o There can be a mog 3 physicd links for any given node par within one
peer group, or a most one physica link otherwise,

Peer Group Connectivity

25



» The peer group connectivity is determined by the network hierarchy and node
connectivity. However, the supported number of node pairs as outsde link
between two peer groupsis at most 5, and the supported number of node pairs
as outside link for one peer group connecting to other peer groups is a most
10.

Timers

> All timersareinitidly disabled, i.e, they are set to 0.0.

> Not dl of the PNNI timers are used, for example, the Peer Delayed Ack Timer
and the Request Rxmt Timer because there are no unexpected events taking
place during the program smulation.

Path Selection

» The specific path sdlection and its related mechanisms are not considered, nor is
the routing table automaticaly modified according to any topology change. For
determining the connectivity to the PGL in one PG or determining the
connectivity between two PGLS (i.e,, LGNs at the higher levd) in two PGs, a
samplelink gtate protocal, i.e., Shortest Path First (SPF) agorithm, is used.

» Thedday of ahigher levd logica link is cdculated by accumulating ddays dong
the lowest-level physica links determined by the SPF agorithm, the cost of the
physicd linksisignored, and their usable bandwidth is not limited.

Falures
» The smulator program only supports one failure (node or link) and restore per
smulation run.

SVCC Egablishment Time

» In this amulaor program, the signaling protocol is not specified, therefore we
assume an amount of time for the SYCC egtablishment after two PGLs are
elected and both uplink information are received. This amount of time conssts
of higher level connection delay, which is the sum of related lowest leve
physicd link ddlays, and higher level node processing time, which is the sum of
related lowest level node processing times.

Save Space
» Theevents and states related to different protocol modules are represented by a

sngle letter (e.g., “A” presents “Link Up” event in Hello FSM or “Sarting”
gate in PGLE FSM).

7.2 General Assumptions

26



The notions of the Hello protocol, the PTSE/PTSP message flooding, link
aggregation, PGL eection, the Topology database and the LGN Hello protocol are
maintained.

» Theinitid gate of the Hello FSM is“Down’, i.e, the link is not usable.

» Theinitid dae of a neighboring peer FSM is “NPDown’, i.e, there are no
active links to the neighboring peer.

» Theinitid gate of the PGL Election FSM is “Starting’, i.e.,, the PGL Election
FSM isingtantiated before the first Hello FSM is started.

» The initid dae of the LGN Horizontd Link Hello FSM is “Down’, i.e, no
uplink PTSEs have been received including an uplink to the neighboring peer
LGN with the same aggregation token vaue as that indicated in the LGN
horizontd link hello data Structure,

Different physca links can have different link ddays. Different nodes can have
different packet processing overheads. A node' s processing overhead can also be
different for each type of packet (Hedlo, PTSE, DBS, etc.). Different nodes can
have a different PTSE refresh interval.

One PTSP can bundle either dl routing database information stored in a node or
each routing database information stored in a node.  Either a sngle PTSE or dl
PTSEs in one node are flooded or refreshed at one time. The PGL can be
dynamicaly eected, the eection process only exists a the lowest level.

A falure @ anode or alink (at any hierarchica level) will dways cause a detectable

time-out at the other node waiting for processing with the failed node/link.

» A link fallure will causethe “Link Down” event for both nodes at the ends of the
link.

> A physica node falure will cause the “Link Down” event at the nodes a the
opposite ends of al the attached links.

> A logicd node fallure will be detected by the “Inactivity Timer Expired” event at
the nodes at the opposite ends of dl the attached links.

The link restore will cause the “Link Up” event a both nodes attached by the link.

The node restore will cause the “Link Up” event at both sides of al links attached to

the restored node.

8 Components Programming

A component is a basc executing element of the smulator. There are two classes of
components. ATM switches and physcd links  The ATM switches dlow different
configurations within the network topology in order to accommodate the smulation of a variety
of implementations. The smulator program is executed based upon events generated by

27



components, especidly by the ATM switch. The event is fired based upon different protocol
modules, which will be described below.

All components (ATM switches or physical links) have the same data structures that are used to
gtore any information needed by the component, as well as standard information needed by the

smulator for other components. Component information is kept in alinked list; the order of the
list depends on the order of the creation of the component.

8.1 ATM switch

For the reader’ s convenience, the data structure used for the ATM switchesislisted below:

struct Node{

char PGLE_date; /* PGLE state*/

char addressl[char_len1]; /* ATM address*/

int addresgadd_len]; /* digital valuesof ATM address*/

int level; /* nodelevel */

int priority; /* PGL priority */

int nodegnode g; /* all nodesin thisnod€'s partition/peer group */

int node_number; /* node number in thisnod€'s partition/peer group */

int part_seq; /* partition sequence within thisnode's peer group */

int temp_nodegnode _g|; /* all nodesin thisnode's partition when existing failure */

int temp_node_number; /* node number in thisnode's partition when existing failure*/

int temp_part_seq; [* partition sequencein thisnode's partition when existing failure*/

int pg_seq; /* thisnod€' speer group sequence number */

int node_seq; /* node sequence number */

int LGN_ID; /* Logical Group Node D */

int attached_number; /* connection number attached to thisnode*/

int attached_num; /* connection number attached to thisnodeif
existing logical nodefailure*/

int connectiongconnect_g|; /* connections attached to thisnode */

int node_attached[connect_g|; /* nodes attached to thisnode */

int first; /* flag for first Hello state machine started */

int result[node_s][data_S]; /* routing database information */

int PGL 1[node g|; /* PGL information for each nodein thisnode's
partition/peer group */

int PGL; /* PGL elected by thisnode*/

int PGL_priority; /* PGL'spriority after PGL iselected */

int uplink[8*outside_sl]; /* uplink PTSE information */

int stable_nodegnode g|; /* stable nodesfor database synchronization */

int stable_count; /* number of stable nodesfor database synchronization */

int stability[2]; /* flag to reach stability for database synchronization and PGLE */

int change flag; /* flag for changing preferred PGL */

double active_time[connect_g|; /* link activetime, i.e. link PTSE isgenerated */

doubleup_time; /* node active/lup time*/

doubleprocessing_time[4]; /* node processing overheadsfor different packet types — */

double PTSERefresh _I; /* PTSE refresh interval */

double PGLE_timer[4]; /* PGLE timer */

double PTSE_refresh[timer_g|[3]; /* PTSE refresh and expired timer */

28



double uplink_refresh[outside s1][3]; /* uplink PT SE refresh and expired timer */

double PGLE_timer1[4]; /* PGLE timer for backup */

double PTSE_refreshl[timer_g|[3]; /* PTSE refresh and expired timer for backup */

double uplink_refreshl[outside s1][3]; /* uplink PTSE refresh and expired timer for
backup */

struct Node * next; /* linked list */

} *first_node, *current_node, *node ptrl, *node ptr2, *node ptr3, *node ptrd4, *node ptr5,
*node _ptr6;

The network topology may have as many nodes as needed. They are sored in a linked list
pointed to by current_node. The first node is pointed to by first_node, next node is pointed
to by next, and so on. That is, each node' s pointer points to next node's pointer, if a nodeis
added, the amulator program must create and initialize a node structure and put it on its linked
list. Except for the first node, dl other nodes are not set to a fixed pointer because the number
of nodes for each network topology is not fixed. Note that, the pointer node ptr1, node ptr2,
node ptr3, node ptr4, node ptr5 and node ptr6 are used to temporarily differentiate some
nodes so as not to be confused with other nodes.

In the above data structure, some parameters are explained as follows:

char_lenl represents the maximum number of characters in one line for ATM
addressinput.

add_len represents the number of bytesfor ATM address.

node s represents the maximum number of nodes in one peer group.

nodeg node g used to record dl nodes in this node's partition or peer group for
PGLE, gability determination, etc.

part_seq used to record the partition sequence within this node's peer group.

Normally, there is one partition for one peer group.
temp_nodegnode s] used to record dl nodes in this node's partition when exigting link or
node failure.
temp_part_seq used to record the partition sequence in this node's partition, because a
link failure or node failure may lead to severd partitions for this node' s

peer group.

connect_s represents the maximum number of connections to other nodes.

attached_num represents the connection number attached to this node if existing logical
node failure, which is used to verify the falure.

data s represents the routing database information size for each node.

PGL 1[node 9| represents the PGL information for each node in this nodes
partition/peer group, which is used for PGLE and dability
determination.

active_time[connect_g] used to record the link active time when the link PTSE is

generated.

29



processing_time[4]

PGLE_timer[4]
timer_s

outside sl

used to record the node processing overheads for different packet
types, including Hello, Database Summary, PTSE Request, PTSP
packets.

used to represent the SearchPeer Timer, PGLInit  Timer,
OverrideUnanimity Timer and ReElection Timer for this node.
represents the maximum number of PTSE refresh timers (Nodd |G,
IRA 1G and Links |G, etc.).

represents the maximum number of node pairs as outside link for one

peer group.

PTSE refresh[timer_g|[3]/uplink_refresh[outside s1][3]

Specificaly, PTSE expired timer is considered because there may exist
alink or node failure in the PNINI network topology. It conssts of one
of two Stuations. The first isto represent when the PTSE expired timer
for a faled node or link because the falled node or link’s information
may be stored in other nodes. The second is to represent the PTSE
expired timer for anorma node or link, because any link or node fallure
may lead to lose of connectivity between any two nodes, and one
node's database information may not be able to be flooded to other
nodes. Note that, PTSE timer expired event only happens when there
exigsalink or node falure.

Note: The timer backup information is consdered because the timer may be reset a some time
and the original timer event is updated.

8.1.1 Higher level LGN

For the reader’ s convenience, the data structure used for the higher level LGN is listed below:

struct LGN {
int addresgadd_len]; /* ATM address*/
int level; /* nodelevel */
int nodegnode g; /* all nodesin thispeer group */

int node_number;
int PGL[part_g|;

/* node number in this peer group */
/* PGL for each partition in this peer group */

int partition; /* partition number for thispeer group */

int temp_partition; [* partition number for thispeer group when existing failure*/
int pg_seq; [* peer group sequence number */

int LGN_ID; /* Logical Group Node D */

int attached_number; /* connection number attached tothisLGN */

int attached_num;

/* connection number attached to thisLGN if existing
logical nodefailure*/

int connectionglh_connect_g|; /* connectionsattached tothisLGN */

int Ign_attached[h_connect_g]; /* LGNsattached tothisLGN */

int result[part_s|[pg_s|[h_data_g]; /* routing database information */

int stable_Igns[pg_s; /* stableIgnsfor database synchronization */

30



int stable partgpg_s|; /* stablelgn'spartition sequencefor database synchronization */

int stable_count; /* number of stableIgnsfor database synchronization */

int stability; [* flag to reach stability for database synchronization */

int pair_number; /* number of node pairsfor thispeer group */

doubleactive time[part_g|; /* LGN activetime*/

double PTSERefresh |; [* PTSE refresh interval */

double PTSE_refresh[part_s|[h_timer_g|[3]; /* PTSE refresh and expired timer */

double PTSE_refreshl[part_s][h_timer_g|[3]; /* PTSE refresh and expired timer for
backup */

struct LGN *next; /* linked list */

} *first_Ign, *current_Ign, *Ign_ptr1, *Ign_ptr2, *Ign_ptr3, *Ign_ptr4, *Ign_ptr5, *Ign_ptr;

Similar to the data Structure of the ATM switches, the network topology may have as many
LGNs as needed. They are stored in alinked list pointed to by current_Ign. The fird Ign is
pointed to by first_Ign, next Ign is pointed to by next, and so on. That is, each Ign’'s pointer
points to next Ign’s pointer, if algn is added, the smulator program must creete and initidize a
Ign structure and put it on itslinked lit. Only the pointer for the first Ign is set to a fixed pointer,
al other Igns are not set to a fixed pointer because the number of Igns for each network
topology is not fixed. Note that, algn structure aso represents a peer group information at the

lowest levd.

Some parameters are explained as follows:

addressjadd_len] representsthe ATM address of the first entry node for this peer group.

level represents the node leve of first entry node for this peer group.

part_s represents the maximum number of partitions within one peer group.

partition represents the partition number for this peer group. Normdly, thereis
only one partition for one peer group.

temp_partition represents the partition number for this peer group, because there may
be severd partitions when alink or node failure exigts.

h_connect_s represents the maximum number of higher level connections to other
LGNSs.

pg s represents the maximum number of lowest level peer groups.

h_data s represents the routing database information size for each LGN.

stable Igngpg_s] used to record the stable Igns for database synchronization.

stable partgpg 9|

h_timer_s

group.

and Horizonta Links |G, etc.).

8.2 Physical Links

For the reader’ s convenience, the data structure used for the physicd linksis listed below:

31

used to record the stable Ign's partition sequence for database
synchronization because there may exist serverd partitions for this peer

represents the maximum number of refresh timers (Nodd 1G, IRA 1G



struct Connection {

char Hello_state[parallel_g][2]; /* Hello statesfor both nodes of parallel physical links*/

char DBS_statef2]; /* DBS statesfor both nodes*/

int node(2]; [* corresponding both nodes */

int datalparallel_s|[5][2];  /* transmitted data bidirectionally for parallel physical links*/

int DS_seq[2]; [* DS sequence number for both nodes*/

int Master[2]; [* Master flag for both nodes*/

int request[node_s|[data_s|[2]; /* PTSE request list for both nodes*/

int DBS _link; /* link seq for database synchronization */

int link_number; /* number of parallel physical links*/

int linkg[parallel_s|[2]; /* link sequencefor both nodes of parallel physical links*/

doubledeay[paralld_g]; [* parallel physical link delay */

double up_time[parallel_s]; [* parallel physical link active/up time */

doubleup_time_min; /* minimum valuefor par allel physical link active/up times*/

doubleHello_timer[paralle_s|[2][2]; /* Hello and I nactivity timer for both nodes of

parallel physical links*/

double DBS timer; /* DBStimer for Master sendingfirst DS packet */

doubleHéllo_timer1[paralld_sg|[2][2]; /* Hello and I nactivity timer for both nodes of
parallel physical linksfor backup */

double DBS timer1; /* DBStimer for Master sending first DS packet

for backup */
struct Connection *next; [* linked list */
} *first_connection, *current_connection, * connection_ptr;

Note that, there may be more than one physica link between any two nodes, therefore one
connection is defined to represent parald physical links between two nodes. Similar to the data
dructure of the ATM switches, the network topology may have as many connections as
needed. They are dored in a linked list pointed to by current_connection. The firg
connection is pointed to by first_connection, next connection is pointed to by next, and so on.
That is, each connection’s pointer points to next connection’s pointer, if a connection is added,
the amulator program must create and initidize a connection dructure and put it on its linked ligt.
Only the pointer for the first connection is set to afixed pointer. All other connections are not
et to afixed pointer because the number of connections for each network topology is not fixed.

In above data structure, some parameters are explained as follows:

paralld_s represents the maximum number of parald physica links between two
nodes.

data[paralld_g|[5][2] used to Store the transmitted data bidirectiondly for different packet
types (i.e, Hello, Database Summary, PTSE request, PTSP, PTSE
Acknowledgment) for parale physicd links.

DBS link represents the link seq for database synchronization, meaning that one
pardld physicd link between both nodes is used to perform the data
gynchronization mechanism, including the transmisson of Database
Summary, PTSE request, PTSP, PTSP Acknowledgment packets.

32



up_time _min represents the minimum vaue for pardld physca link active/up times,
which is used as the connection’s active time.

8.2.1 Higher level links

Additiondly, if exiging higher leve links, the amulator program will utilize the following deata
gructure for the higher leve links:

struct H_connection {

char Hello_statefoutside_g|[2]; /* SVCC-based RCC Héllo statesfor both LGNs*/

char DBS_state[outside _g|[2]; /* SVCC-based RCC DBS statesfor both LGNs*/

char Horizontal_state[outside g|[2]; /* Horizontal link statesfor both L GNs of multiple
horizontal links*/

int DS_seg[outside 9|[2]; /* DS sequence number for both LGNs*/

int Master[2]; /* Master flag for both L GNs*/

int request[outside s|[pg_s][h_data s][2];/* PTSE request list for both L GNs*/

int Ign[2]; [* corresponding two L GNs*/

int RCCJoutside_s|[low_connect_g]|[2]; /* SVCC-based RCC */
int low_connect_number[outside s|;  /* number of lowest level connectionsfor the RCC */

int link_number; /* number of multiple horizontal links*/

int links[outside_¢][2]; /* link sequence for both L GNsof multiple
horizontal links*/

int add_flag[outside_g]|[2]; [* flag for AddInducingLink for multiple horizontal links*/

int part[outside 9][2]; [* partition sequencefor SVCC-based RCC and
horizontal link */

int SVCC_flag[outside g]; /* link sequencefor SV CC-based RCC located
which horizontal link */

int border_node[2*outside g); /* both border nodesfor multiple horizontal links*/

int extension[2*outside _9|[2]; /* LGN horizontal link extension |G */

int stable flag[outside |[2]; /* flag for horizontal link stability */

double active_timeloutside g); /* SVCC-based RCC activetime*/

double delay[outside S]; /* SVCC-based RCC delay */

double processing_time[outside §|[5][2]; /* LGN processing over headsfor different packet

types*/

doubleHello_timer[outside 5|[3][2]; /* SVCC-based RCC Hellotimer */

double DBS timer[outside g]; /* DBStimer for Master sending first DS packet */

doublelnactivity timer[outside 9[2]; /* Horizontal link I nactivity timer */

doubleHello_timer1[outside _g|[3][2]; /* SVCC-based RCC Hélo timer for backup */

double DBS _timer 1[outside g]; /* DBStimer for Master sending first DS packet

for backup */
doublelnactivity_timer1[outside s|[2]; /* Horizontal link Inactivity timer for backup */
struct H_connection *next; /* linked list */

} *first_h_connection, *current_h_connection, *h_connection_ptr;

Note that, there may be two or more horizontal links between any two LGNS, therefore one
higher level connection is defined to represent multiple horizonta links between two LGNs.
Higher level connection is a generd term, it contains the horizonta links and the SV CC-based
RCC. In case of a partition one or more horizonta links may be specified as SVCC-based
RCCs.

33



Similar to the data sructure of physicd links, the network topology may have severa higher
level connections when needed. They are dored in a linked list pointed to by
current_h_connection. Thefirg higher level connection is pointed to by first_h_connection,
next higher leve connection is pointed to by next, and so on. That is, each higher leved
connection’s pointer points to next higher level connection’s pointer, if a higher level connection
is added, the Smulator program must create and initidize a higher level connection structure and
put it on its linked list. Only the pointer for the first higher level connection is st to a fixed
pointer. All other higher level connections are not set to a fixed pointer because the number of
higher level connections for each network topology is not fixed.

Some parameters are explained as follows:

outside s represents the maximum number of node pairs as outside link between
two peer groups.

Hello_statefoutside s|[2]/DBS state[outside g|[2]
represents the SVCC-based RCC Hello/DBS states for both LGNSs.
Note that, normally there exists only one SV CC-based RCC between
any two LGNs. However, due to partitioning resulting from a link or
node falure, there may exist two or more partitions for one lowest leve
peer group.

DS seg[outside 9][2] represents the DS sequence number for a pair of LGNS, in case

of multiple SV CC-based RCCs due to partitioning.

request[outside s|[pg_s|[h_data s|[2] represents the PTSE request list for both LGNs
which congdering possble multiple SYCC-based RCCs due to
partitioning.

low_connect_s represents the maximum number of lowest levd connections which
compose the SV CC-based RCC.

RCC[outside s|[low_connect_g|[2] represents the SVCC-based RCC which
considering possible multiple SVCC-based RCC. Each SVCC-based
RCC contains servera lowest level connections and nodes, which are
cdculated by the SPF dgorithm.
low_connect_number[outside s]  represents the number of lowest level connections for
the RCC, which considers possible multiple SV CC-based RCCs.
stable flag[outside s|[2] represents the horizontd link gability, that is, when the
horizontd link Hello FSM reachs “ 2-WayReceived’ date.

active_time[outside g represents the SVCC-based RCC active time which considers
possible multiple SVCC-based RCC.
delay[outside _g] represents the SVCC-based RCC dday, which is the sum of

related lowest level physicd link delays.
processing_timeloutside g|[5][2]  represents the LGN processing overheads for different
packet types which considers possible multiple SVCC-based RCC.

34



Before the SVCC-based RCC is established, the overhead is the sum
of related lowest level node processing overheads. After the SVCC is
established, the overhead only means the processng overhead of the
node at the end of the SV CC-based RCC.

Hello_timer[outside s|[3][2] represents the SVCC-based RCC Hello timer which considers
possible multiple SV CC-based RCC, including Hello Timer, Inactivity
Timer, SVCintegrity Timer and Horizonta Link Inectivity Timer for
both LGNSs.

9 Architecture of the Simulator

The amulator software has been designed in a modular fashion usng a number of building
blocks: initidization module, a user interface module, an event manager module, a number of
protocol modules (i.e., Hello FSM, Neghboring Peer FSM, PGLE Election FSM, LGN
related protocols), and control modules. These blocks interact with each other as shown on
Figure 1.

Initialization

Set parameters

Create/modify modules User Interface
Start/stop simulation
Error/Recover ”
Contral Processing Event Manager

Modules Schedule events

Display statistics Fire events

Protocol M odules

N

Hello DBS PGLE LGN

Figure 1: The building blocks of the smulator software

35



9.1 Initialization module

The initidization module, incdluding the function Initialize () and node and link related
initidization part in the user interface function User _interface (), is used to initidize the data
sructures and variables in the smulator software.

9.2 User Interface

The data structure used for the text user interface is as follows:

struct {
char output; /* flag for output data per link each timeor at theend */
char failure; [* flag for link failureor nodefailure*/
char node failure; [* flag for physical nodefailure or logical nodefailure*/
int option[2]; * option for bundling PT SP packet and refreshing PTSE */
int node_number; [* total node number at thelowest level */
int pg_number; [* peer group number at the lowest level */
int connection_number; [* connection number at thelowest level */
int h_connection_number; /* higher level connection number */
int input; [* flag for input configuration file*/
int fail_pg; [* failed peer group for configuration */
int fail_node{2]; [* failed nodesfor configuration */
int fail_connection; [* failed connection for link failurefor configuration */
int fail_link_seq; [* failed link sequence for link failure for
configuration */
int fail_h_connection; [* failed higher level connection for configuration */
double start_time; /* simulation starting time*/
double execute_time; /* simulation executed period */
doublefailure_time; /* when alink failureor nodefailuretakesplace */
doublerestore_time; /* when torestorethelink failure or nodefailure*/

} Inter; /* user_interface */

This text User Interface (Ul) specifies the network topology and sets the parameters for
smulation runs. The Ul provides many options to cover many kinds of stuations. It dlowsthe
user to setup different configurations for different nodesin order to accommodate the smulation
for a variety of implementations. It dso permits the user to define a link failure or node failure.
Once a network topology is created and the appropriate parameters are set through the Ul, the
network can be smulated without the Ul. The Ul provides the control for the smulation gtart
and stop.

The user interface (function User _interface ()) contains the following contents:
1) Setup options for PTSP bundling during database synchronization and for PTSE

refreshing.  Options for other packet types (Database Summary, PTSE request,
etc.) are not considered.

36



2) Use the default node processng overheads and refresh interva or change the
current default values, if necessary.

3) Set thetotal number of nodes for the PNNI network topology.

4) Setup the node (ATM Switch) configuration by using the ATM address, Node
Level, Peer Group Leadership Priority, node active/up time, and node processing
overheads for different packet types, if necessary.

5) Repeat sep 4) until accomplished for dl nodes configuration in this network
topology.

6) Determine the node's connectivity (Physical Link). If there is a connection
between this node and any other node, it is necessary to determine how many
physcd links exist and what is the physicd link delay and the physicd link acivelup
time.

7) Repeat gep 6) until accomplished for dl nodes connectivity configuration in this
network topology.

8) Setup alink falure or node falure and detall it, if any.

9) Setup the program smulation period and outpuit flag.

Note thet, higher level connections are determined by the lowest level node's ATM address,
node level and connectivity entries.

37



9.3 Control module

The control

module is used to monitor the running process of the smulator. It can creste or

modify the network topology. It aso permits the user to process the link failure or node failure
and link restore or node restore a the defined time. Any link failure or node failure may lead to
lose of connectivity between other nodes and the PGL. Also new information received from
another node may change this node's choice of preferred PGL. Moreover, it outputs the
ggnificant messages (display datistics) so that the user can andyze the running results for the
vaues of performance measures of interest. Thereisno separate routine for the control module,
its feetures are completed in the User _interface () asfollows:

1

2)

3)

4)
5)

Make sure the correctness of the entered parameters, and then continue.  If not,
modify sdected entered parameters or just rerun the program to enter dl
parameters.

Determine whether there is a link falure or node falure in the future after the
program runs. If yes, st up the failure time. When the smulation time reaches the
falure time, the program automaticaly accesses the falure details through the
function Failure_processing ().

If alink failure or node failure exists and the user needs to restore this failure, when
the smulation time reaches the restore time, the program accesses the restore
detalls through the function Restore_processing ().

Satup the program smulation time, which specifies the running period.

Determine whether the program is to disolay the Satidtics a each time of event
execution so that the user can andyze the running results for the vaues of
performance measures of interest. The transmitted data is counted at both
directionsfor each link.

9.4 Event manager module

The smulator is event driven. The event queue is a queue of events arranged in time order.
After an event isfired, the event in the queue is removed.

For the readers convenience, the data structures used for the event manager are listed as

follows
struct Event {
char event; /* thisevent */
int flag[6]; [* flagsfor thisevent, including connection, link sequence,
node, protocol and partitions*/
int Dbaselnode_s|[data_g]; [* databaseinformation at the lowest level */
int Dbasel[pg_s|[h_data g|; [* database information at the higher level */

38



int Dbase flag; [* type of packet */

int extension[2* outside _g|; /* LGN horizontal link extension |G */
int timer_flag; [* flag for real event or timer event */
int node[node _g; /* nodesin one peer group for flooding */
double gamp; [* timestamp */

struct Event *lagt; [* last event */

struct Event *next; [* next event */

} *first_event, *current_event, *final_event, *event_ptr, *currentl _event, *up_eventl, *down_eventl,
*down_event2;

struct Exe_event {

char event; [* executed event */
int flag[6]; [* flagsfor thisevent, including connection, link sequence,
node, protocol and partitions*/
int Dbasglnode_g)[data g; [* databaseinformation at the lowest level */
int Dbasel[pg_s|[h_data g]; [* database information at the higher level */
int Dbase flag; [* type of packet */
int extension[2* outside _g|; /* LGN horizontal link extension |G */
int node[node _g; /* nodesin one peer group for flooding */
struct Exe_event *next; /* next executed event */
} *first_exe _event, *current_exe_event, *currentl_exe event;
struct {
char Hello; /* Hello FSM event */
char DBY[4]; /* Neighboring Peer FSM events*/
char PGLE[3]; /* PGLE FSM events*/
char SVCC_temp; [* temporary event for SVCC-based RCC Hellowhen PGL eected */
char SVCC_Hédlo; /* SVCC-based RCC Hello FSM event */
char SVCC_DBY[3]; /* SVCC-based RCC Neighboring Peer FSM events*/
char Horizontal; /* Horizontal link Hello FSM event */
} Future _event;
struct {
double Hello; /* Hello event'stime stamp */
double DBY[4]; /* Neighboring Peer events' time stamp */
double PGLE[3]; /* PGLE events timestamp */
double SVCC_temp; [* temporary time stamp for temporary SVCC event when
PGL elected */
double SVCC_Hdllo; /* SVCC-based RCC Hello event'stime stamp */
double SVCC_DBY3]; /* SVCC-based RCC Neighboring Peer events time stamp */
double Horizontal; /* Horizontal link Hello event'stime stamp */

} Future_stamp;

In the above data structures, struct Event is used for dl events. During the smulation period,
the event queue may have many events, and they are Sored in a bi-directiona linked list pointed
toby current_event. Thefirg event is pointed to by first_event, the find event is pointed to
by final_event; next event pointsto by next, last event is pointed to by last, and so on. That
is, each event’s pointer is pointed to next event’s pointer and last event’s pointer, if an event is
added, the smulator program must create and initidize an event structure and put it on its bi-
directiond linked list. Only the pointers to the first and find event are set to afixed pointer. All
other events are not set to a fixed pointer because the number of events during the program

39



running period for each network topology is not the same, dso note the first event and find
event are dynamicaly changed. In order to insert an event into the event queue arranged in time
order, afunction Event_insert () is cdled. As for the timer expiration events, if the timer is
disabled, its event is removed from the event queue by caling function Timer_event (). If the
timer is restarted, its event based upon the new timer expired value is inserted into the event
queue and its event based upon the old timer expired vaue is removed from the event queue.
The smulator software supports a limited number of timers.

struct Exe event is usad for the executed events. During the Smulator program running
period, the executed event queue may have severa executed events at the earliest occurrence
time (i.e, take place within the range of time accuracy), and they are stored in a linked list
pointed to by current_exe event. Thefirst executed event is pointed to by first_exe event,
next executed event is pointed to by next, and so on. That is, each executed event’'s pointer
points to next executed event’s pointer, if an executed event is added, the smulator program
mugt create and initidize an executed event Structure and put it on its linked lisg. Only the
pointer for the first executed event is set to afixed pointer. All other executed events are not set
to a fixed pointer because the number of executed events at the earliest occurrence time may
not be the same,

struct Future event and struct Future_stamp are used to temporarily store the future events
and time stamps for different protocol modules, and then they will be stored in the event queue
(struct Event).

We use a discrete-event, continuous-time modd as the smulaion mode, meaning tha the
events of interest occur a discrete points in time. Under a discrete-event modd, the time
parameter is conceptualy continuous and can thus be arbitrarily increased. The discrete
changes in systems dtates or events occur a any red time. The smulation software contains an
event manager (EM) that provides a generd facility to schedule and send or fire an event. The
function of the EM is to maintain and update an event queue arranged in the time order. The
EM module dso maintains a globa clock to keep track of the smulation time. The EM is a
critical module in the smulator software. Its primary functiondity isthe control of event queuing,

which includes the following functions.

40



Event select

Il Fire events Reach
Event_execute earliest
occurrence
Schedule events time
Event_insert/
Timer_event

Figure 2: The building functions of event manager

1) Event_select (). This function is used to sdect the executed events with the
earlies occurrence time in the event queue and return the sdected number of
executed events (exe_number). The sdected events are put into the executed
event buffer, and in the meanwhile, the sdlected events are removed from the event
queue. Note that there may be more than one sdected event with the earliest
occurrence time.

2) Event_execute (exe_number). This function is used to execute the sdected
events. The execution of event means to fire the event. When the selected event(s)
are fired they are removed from the executed event queue. Furthermore, firing the
event(s) may creste one or more future events, which are then inserted into the
event queue in the correct time order. The sdected event rdated to different
protocol modules will be executed by the different protocol modules, which are
described below.

3) Event_insert (). This function is used to insert the future events into the event
queue in the correct time order. Timer_event () is used to remove the old timer
expiration event from the event queue.

4) The running clock hops to the earliest occurrence time, thet is, the time stlamp for
the first event in the event queue. This approach is used to save CPU resources.
The heart of the Smulator is aloop executing the above cycle until the Smulation is
terminated.

Note that, during the program’s running period, struct PNNI is used as a common data
gructure, which isliged asfollows:

struct {
int event_number; [* event number in event queue*/

41



int fail_pg; [* failed peer group during failure period */

int pre_fail_node; /* predefined failed node during failure period */

int fin_fail_node; /* final failed node during failure period */

int|_error[3]; /* flag for link failure, physical or logical nodefailure
during failureperiod */

int pre fail_Ign; /* predefined failed LGN during failure period */

int fin_fail_Ign; /* final failed LGN during failure period */

inth_error[2]; [* flag for higher level link failure, or LGN failure

during failureperiod */
int local_PGL; /* local PGL to check whether the uplink PT SE hasbeen changed */
int remote PGL; /* remote PGL to check whether the uplink PT SE hasbeen changed */
intuplink_seq; /* sequence number to check whether the uplink PT SE has been changed */
doubletime _min; /* earliest occurrencetimefor executed events*/
doubletimer[7]; [* temporary timer expired values*/
} PNNI;  /* simulation parameters, especially for nodeor link failure*/

9.5 Protocol modules

The sdected events with the earliest occurrence time are executed separately based on different
protocol modules. Each protocol module consists of an action routine. The routineis called for
each event that happens to the protocal.

The protocol modulesinclude the following:

Hello Finite State Machine (FSM), which is used to execute its rdlated Hello
events, and trigger the related events for the Neighboring Peer FSM and PGL
Election FSM.

Neighboring Peer FSM (DBS protocol), which is used to execute its database
synchronization related events, and trigger the related events for the PGL Election
FSM. Note that, during database synchronization, the PTSEs may be flooded or
refreshed.

PGL Election FSM, which is used to execute its PGLE related events, trigger the
flooding of the PTSE with preferred PGL, and may incur the establishment of an
SVCC-based RCC. If two PGLs have been separately eected in two PGs and
there exist border nodes between these two PGs, then the connectivity between
these two PGLs is determined and how many lowest leve links and how many
lowest level nodes are cdculated based upon the Shortest Path First (SPF)
dgorithm.

SVCC-Based RCC Hello FSM, which is used to execute its related Hello FSM,
and trigger its related events for the SVCC-based RCC Neighboring Peer FSM.
This protocoal is very closeto the protocol between lowest-level neighbors, and uses
the same packet type.

SVCC-based RCC Neighboring Peer FSM (SVCC DBS protocol), which is
used to execute its database synchronization related events. This protocol is aso
very close to the protocol between lowest-level neighbors. Note that, during the

42



neighboring peer FSM, the PTSES may need to be flooded or refreshed; for the
SVCC-based RCC, we assume that there is no PGL eection.

Horizontal Link Hello FSM, which is used to communicate and agree upon the
horizontd links which they will mutualy advertise. The events and dtates of dl
horizonta links to an LGN neighbor are determined from the informetion in asngle
LGN Horizontd Link Extenson information group included in the Hellos sent over
the SV CC-based RCC.

All these protocol modules share severd data Structures.  The protocol-related information is

stored in the node structure, link structure and event structure.  All these protocol modules are
briefly described as follows.

9.5.1 Hello FSM

The Hello-related protocol executed moduleis the following:

void Execute_Héllo (event, nodel, node2, connectionl, link_seq, directionl, delayl,
processing_timel[]);

char event; /* executed event */

int nodel,; /* onenodefor the executed connection */

int node2; /* another nodefor the executed connection */

int connectionl; /* executed connection */

int link_seq; /* physical link sequence between both nodes*/

int directionl; /* definethedirectionality of thisconnection */
doublededayl; /* delay for thisphysical link */

double processing_timel[]; /* node processing over headsfor different packet types*/

This function will cal the Hello FSM routine Hello FSM () based upon the PNINI routing
specification. Note that, the action taken in the Hello FSM () use the abstract style, for
example

switch (event) {
case'A'": /* Link Up */
switch (state) {
case'a': [* Down */
if (link_flag==0) Future_event.Hello="B";/* “1-Way Inside Received “ */
else Future _event.Hello="'D"; /*link_flag=1or 2,“1-Way Outside Received” */
Future _stamp.Hello = PNNI.time_min + processing_timel[0] + delayl;

jitter = Random_jitter (); [* timer isjittered */

PNNI .timer[0] = PNNI.time_min + Hello_1*(1.0 + jitter);

state="b'; [* “ Attempt” state*/
break;

9.5.2 Neighboring Peer FSM

43



The data structure used for the neighboring peer FSM is the following:

struct {
int packet[2]; [* flag for different packet types*/
int lower 1[node_s|[data_g]; [* packet information for first event at the lowest level */
int lower 2[node_s|[data_g]; /* packet information for second event at the lowest level */
int db_number; /* number of nodesin one node's databasefor PTSP separated */
int higher 1[pg_s|[h_data g]; /* packet information for first event at the higher level */
int higher2[pg_s][h_data g]; [* packet information for second event at the higher level */
int flooding; [* flag for the PTSP flooding in database */

} DBS; /* Neighboring Peer */

In order to make the executed neighboring peer FSM routine relatively independent for specific
link and node, some temporary variables and arrays are used.

Similarly the DBS-rdated protocol executed module is the following:

void Execute_DBS (event, nodel, node2, connectionl, link_seq, directionl, delayl,
processing_timel[]);

char event; [* executed event */

int nodel; /* one nodefor the executed connection */

int node2; /* another node for the executed connection */

int connectionl, [* executed connection */

int link_seq; [* physical link sequence between both nodes*/

int directionl, /* definethedirectionality of thisconnection */
doubledelayl; /* delay for thisphysical link */

double processing_timel][]; /* node processing over headsfor different packet types*/

The execution of this function is quite complicated. It will cdl the DBS FSM routine
DBS FSM (), because it involves the processng of a link fallure or node falure and the
flooding of some PTSP packets. If there exigs a link falure or node fallure after finishing the
execution of related events (that is, call the routine, Failure_processing ()), the program may
need to remove the faled link or the links attached to the failed node and to execute the
function, PGL _connectivity () to determine the connectivity to PGL. Thisis done for dl nodes
in this peer group, if a PGL exids for this peer group. The PGL _connectivity () function
utilizes the Shortest Path First (SPF) dgorithm. If the failed link or node is to be restored, then
when the gmulaion progran reeches the redtored time it will cdl the routine,
Restore processing (), to restore the fallure and then continue running the program.

If there are more than two nodes in one peer group, during the database synchronization
(including PGL dection) and PTSE refreshing, the PTSP packets may need to be flooded
everywhere in the peer group, therefore the DBS-related protocol executed module needs to
cdl the flooding routine. For the programmer’s convenience, the flooding routine is separated
into two functions: Flooding () and Flooding_1 (). The Flooding () is used to flood the PTSP
packets during the database synchronization; the Flooding 1 () is used to flood the PTSP
packets for the PGL dection and PTSE refreshing.  In more detall, the Flooding () and
Flooding_1 () are shown/defined as follows:



void Flooding (nodel, connectionl)
int nodel; /* onenodefor the executed connection */
int connectionl; /* executed connection */

void Flooding_1 (nodel, connectionl, packet_flag)

int nodel; /* onenodefor the executed connection */
int connectionl; /* executed connection */
int packet_flag; [* packet typefor PGLE and PT SE advertised/r efreshed */

When a PTSE refresh timer expires or a PTSE expired timer expires, the smulator program
cdls the function PTSE_Refresh () or PTSE_Expired (). Note tha, normaly there is no
PTSE expired events. The PTSE_Expired () is cdled only when a link failure or node fallure
exigs. During the execution of PTSE_Expired (), the function, Connectivity _two, may be
cdled to determine the connectivity between any two nodes in one peer group.

Additiondly, it is necessary to caculate the data transmitted in each link, therefore, the function
Data count (), iscdled.

9.5.3 PGLE FSM

Similarly the PGLE-rdated protocol executed module is the following:

void Execute PGLE (event, nodel, processing_timel[]);

char event; [* executed event */
int nodel; /* onenodefor the executed connection */
double processing_timel][]; /* node processing over headsfor different packet types*/

The execution of this routine calls the PGLE FSM, PGL_Election (). If two PGLs have been
aready dected for two peer groups with border nodes connecting and both uplink PTSE
packets generated by the border node have arrived at respective PGLS, and then the program
can cdl the routine L GN_connecitvity () to determine thelr PGLS connectivity, i.e. the LGN’s
connectivity, which invokes the SVCC-based RCC Hdlo protocol. Similar to the routine
PGL _connectivity (), the LGN_connectivity () dso uses the Shortest Path First agorithm to
determine how many lowest level connections and nodes between this two LGNs. The
falowing isaliging of the routine L GN_connectivity ():

void L GN_connectivity (nodel, node2, h_connection)

int nodel; /* one PGL for the higher level connection */
int node2; /* another PGL for the higher level connection */
int link_seq; /* link sequence number for the SYCC-based RCC */

954 SVCC-based RCC Hello FSM

45



Theliding of the routine Execute_ SVCC_Héllo () isthe following:

void Execute_ SVCC_Hello (char event, int Ignl, int Ign2, int h_connectionl, int link_seq,
int directionl, int partl, int part2, double h_delayl, double h_processing_timel[]);

char event; [* executed event */

intlgni; /* one LGN for the higher level connection */

int Ign2; /* another LGN for the higher level connection */

int h_connectionl; /* higher level connection */

int link_seq; /* link sequence number for thisHello protocol */

int directionl, /* definethedirectionality of thisconnection */

int partl,; [* partition sequencefor one LGN */

int part2; [* partition sequence for another LGN */

doubleh_delayl; /* delay for the higher level connection */

double h_processing_timel[]; /* LGN processing over headsfor different packet types*/

The execution of this routine is quite smilar to lowest level Hello protocol. 1t will need to cdll
the SVCC-based RCC Hello FSM, SVCC_Héllo FSM ().

9.5.5 SVCC-based RCC Neighboring Peer FSM

Theliging of the routine Execute_SVCC_DBS () isthe following:

void Execute SVCC_DBS(char event, int Ignl, int Ign2, int h_connectionl, int link_seq,
int directionl, int partl, int part2, double h_delayl, double h_processing_timel[]);

char event; [* executed event */

intlgnl,; /* one LGN for the higher level connection */

intlgn2; /* another LGN for the higher level connection */

int h_connectionl,; /* higher level connection */

int link_seq; /* link sequence number for this DBS protocol */

int directionl; /* definethe directionality of thishigher level connection */

int partl,; [* partition sequencefor one LGN */

int part2; /* partition sequence for another LGN */

doubleh_delayl; /* delay for the higher level connection */

doubleh_processing_timel[]; /* LGN processing over headsfor different packet types*/

The execution of this routine is quite Smilar to lowest level neighboring peer FSM. 1t will need
to call the SVCC-based RCC Neighboring Peer FSM, SVCC_DBS FSM ().

9.5.6 Horizontal link Hello protocol

Theliding of the routine Execute Horizontal () isthefollowing:

void Execute_Horizontal (char event, int Ignl, int Ign2, int h_connectionl, int link_seq, int direction1,
int partl, double h_delay1, double h_processing_timel[]);

char event; [* executed event */
int Ignl; /* one LGN for the higher level connection */
int Ign2; /* another LGN for the higher level connection */

46



int h_connectionl; /* higher level connection */

int link_seq; /* link sequence number for this DBS protocol */

int directionl, /* definethedirectionality of thishigher level connection */

int partl,; [* partition sequencefor one LGN */

doubleh_delayl; /* delay for the higher level connection */

double h_processing_timel[]; /* LGN processing over headsfor different packet types*/

The protocol for determining the state of horizonta links between LGNs is also based upon the
Héllo protocol. The execution of this routine will cal the LGN Horizontd Link Hello Protocol,
Horizontal FSM ().

47



Annex A. Modifications to Version 1.1 from Version 1.0.

This annex contains the detailed changes to the verson 1.1 from the previous verson 1.0. Since
most of the changes were to the user interface, these changes are listed based on the user’s

perspective.

1) New command line

The previous command line contained only the executable or the executable and a seed vaue.
However the new command line contains the executable and two or three vaues,

as previoudy dated in section 3.1, “ Starting the Program”

aprops.exe seed_value out_configuration file “or”
aprops.exe seed value output_configuration_file input_configuration file

The seed_value isan integer that is used as ainput parameter to the random function, srand ().
The output_configuration_file isafile that will be created that will contain the user’s network
configuration as entered during the running of the user interface. This automates the creation of
anetwork configuration file,

The input_configuration file is a file that contains the usar’s network configuration.  This
permits the user to reuse a previous network configuration without the need to reenter the data
Note that, the output_configuration _file and input_configuration_file can not use the same
name.

2) Automatic creation of anetwork configuration file

The previous verson required the user to input the network configuration manudly through the
user interface or manudly offline. Verson 1.1 automaticaly cregtes a network configuration file
each time the program is invoked. This rdieves the user from manud offline network
configuration file cregtion.

3) Checking for vdid input

The previous verdon 1.0 did not check for vaid input. This created difficulty in fault isolation
for network configuration data. The Verson 1.1 does check for correct input of network
configuration vaues. If entering data manualy at the user interface, the input is tested and the
user is prompted again, if the input is found to bein error. If an input_configuration file is used
and the input is tested and found to be in error the program terminates. For easy fault isolation
the output_configuration_file contains the data that was accepted as correct. Using this
information the user can eadlly find the vaue that is causing the error.

4) Correction of data

The previous version 1.0 alowed the user the option to reenter or correct the input data without
terminating and then rerunning the program. The Verson 1.1 requires that the user terminate
and then rerun the program, if the data needs to be reentered or corrected.

48



5) Warning!!!
The program Verson 1.1 will not work with previoudy crested network configuration files usng
verson 1.0.

49



Annex B. Modifications and Additions to Version 2.0 from
Version 1.1.

This annex contains the detailed changes and additions to this verson 2.0 from the previous
verson 1.1. These changes and additions are listed as follows:

1) Question of the number of nodes versus number of peer groups

The previous verson 1.1 asked the user to enter the number of lowest level peer groups and the
number of nodes in each peer group. Verson 2.0 only requires the user to enter the tota
number of nodes in the PNNI network topology.

The previous verson 1.1 asked the user to enter the connectivity by using the loop method, if
the number of nodes in one peer group was less than 10, or by using the follow-up connected
nodes otherwise. Verson 2.0 asks the user about how many nodes or how many more nodes
are connected for each node and then the user enters the node addresses for those nodes.

2) Input of ATM address

The previous verson 1.1 used the smplified Peer group 1D, Node ID and Node level formét,
i.e. generd digitd numbers. Verson 2.0 utilizes the format specified in the PNNI specification,
that is, the user needs to specify the node's ATM End System Address and node level. The
Peer group ID will be determined by the node level and the prefix of ATM End System
Address.

3) Input of higher leve connections

The previous verson 1.1 needed the user to differtiate the peer groups, thet is, first to enter the
parameters for each peer group in turn, and then to ask the connectivity between any two peer
groups S0 as to create higher level connections. Version 2.0 only requires the user to enter the
connectivity between any two nodes, the higher level connections will be determined by the
program itsdlf according the configuration information.

4) Execution of link or node failure

In the previous verson 1.1, if alink falure or node failure existed, the program would hdt at the
failure time to alow the user to enter the specific link or node which was to fail. The program
would aso halt a the restore time to alow the user to enter the specific link or node which was
to be restored. In Verson 2.0, thelink failure or node failure and its retoration is considered to
be a pat of configuration. Their details are configured as part of the network topology
configuration file. The program will not halt & the failure or restore times.

5) Determination of Partitions

The previous version 1.1 did not check for partitioned peer groups. Verson 2.0 gives the user
the peer group partition information, if two or more partitions for one peer group exist. This

50



dlows the user to determine whether the initid network topology configuration should consist of
a partition peer group.

6) Processng of link failure or node falure
The previous verson 1.1 only permitted a link failure to occur within one peer group. Verson
2.0 dlowsalink failure to occur for any link.

7) Determination of Stability

The previous verson 1.1 did not tell the user when the PNNI routing protocol reached stability,
and what were the details. Version 2.0 outputs the stability information when the PNINI routing
protocol reaches the completion of database synchronization and PGL eection. The program
will tel the user how quickly the falure information is flooded to dl the nodes or the PNNI
routing protocol recovers from alink failure or node fallure.

8) Minor Changes
Verson 2.0 modifies some names of variables in the data structures, and corrects some small
erors or bugsin the program’s desgn and implementation.

9) Warning!!!

Verson 2.0 will not work with any previoudy created network configuration files usng version
10o0r1.1.

51



Acknowledgements:
We would like to thank those who have registered and downloaded previous versions of the
software. This provides us with critical datato continue the support of this project.

We would especidly like to thank those who have used previous versons of this smulation
software and provided us with their detailed problems, findings, studies, concerns, short-
comings and network configurations. These were very hdpful in prioritizing, correcting and
evolving this software.

52



